جبرهای لی شبه ریمانی و ریمانی و خواص آنها

پایان نامه
چکیده

در این پایان نامه، کلاس جدیدی از جبر های لی به نام جبرهای لی شبه ریمانی و ریمانی معرفی می کنیم و نشان می دهیم که این دسته از جبرهای لی، حل پذیر هستند. ثابت می کنیم که یک ساختار پواسون خطی روی دوگان یک جبر لی دارای یک شبه متریک سازگار است اگر و تنها اگر آن جبر لی یک جبر لی شبه ریمانی باشد، همچنین جبر لی که با استفاده از خطی سازی در یک نقطه ی ثابت از یک منیفلد پواسون همراه با یک شبه متریک سازگار بدست می آید یک جبر لی شبه ریمانی است.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

گروه های لی به عنوان منیفلدهای ریمانی یا شبه ریمانی با ضرب تقریبی همراه با ساختار غیرانتگرالپذیر

فرض می کنیم خمینه ریمانی همراه با ضرب تقریبی بوده و میدان برداری نرمال یکه روی زیر خمینه ریمانی باشد. را بصورت تجزیه می کنیم که در آن میدان برداری مماس و تابع یکنواخت روی زیر خمینه ریمانی می باشند. ایمرسون را برای مقادیر و داریم و به ازای هر میدان برداری روی زیر خمینه ، را بصورت تجزیه می کنیم که در آن ، 1- فرمی بصورت روی زیرخمینه می باشد. فرض می کنیم عملگر وینگارتن از ایمرسون است و نشان می دهیم...

15 صفحه اول

هندسه ریمانی جبر های لی گونه

در این پایان نامه جبر های لی گونه ریمانی به عنوان تعمیمی از منیفلد های ریمانی معرفی شده و بسیاری از مفاهیم مهم و کاربردی هندسه نظیر التصاق ، ژئودزیک، انحنای ریمانی و تابع نمایی روی این فضاها مورد بررسی قرار می گیرد

متریکهای سولیتون ریچی لورنتزی یک منیفلد شبه ریمانی روی گروه های لی

سولیتن های ریچی سه گروه لی خاص یعنی گروه سه بعدی هایزنبرگ گروه حرکات لخت فضای اقلیدسی دو بعدی و گروه دو بعدی حرکات لخت فضای مینکوفسکی‎‎مورد بررسی قرار می گیرند.

خمینه های شبه ریمانی همگن تخت

خمینه های شبه ریمانی همگن کامل با خمیدگی ثابت ناصفر با تقریب طولپایی در سال 1961 رده بندی شده است. در همان سال یک قضیه ساختاری برای خمینه های شبه ریمانی همگن تخت کامل بیان شد. این قضیه در سال 1995 منجر به یک رده بندی می شود که دراین پایان نامه مورد مطالعه قرار گرفته است. این قضیه ، رده بندی را متناظر با یافتن جوابهای دستگاهی از معادلات درجه دوم می کند که در سال 2000 مورد بررسی قرار گرفت. البته ...

15 صفحه اول

شار ریچی ریمانی و کیلر، حدسهای پوانکاره، هندسی سازی و کالابی

در سالهای نخست قرن بیستم، هانری پوانکاره پس از آن که همزمان با چند ریاضیدان دیگر موفق شد قضیه یکنواخت سازی را ثابت کند و طبقه بندی رویه ها را نتیجه بگیرد، اولین تلاشها برای طبقه بندی خمینه های سه بعدی را آغاز نمود و این حدس را مطرح کرد که هر خمینه سه بعدی بسته (فشرده و بی لبه) که همبند ساده باشد، با کره سه بعدی همسانریخت است. در این مقاله روند تاریخی تلاش ها برای اثبات حدس پوانکاره را مرور می ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه اراک - دانشکده علوم

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023